首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42748篇
  免费   1764篇
  国内免费   1806篇
  2023年   390篇
  2022年   516篇
  2021年   644篇
  2020年   817篇
  2019年   991篇
  2018年   1012篇
  2017年   876篇
  2016年   892篇
  2015年   862篇
  2014年   1894篇
  2013年   3289篇
  2012年   1351篇
  2011年   2001篇
  2010年   1456篇
  2009年   1970篇
  2008年   2134篇
  2007年   2147篇
  2006年   1824篇
  2005年   1734篇
  2004年   1400篇
  2003年   1352篇
  2002年   1120篇
  2001年   898篇
  2000年   797篇
  1999年   709篇
  1998年   731篇
  1997年   680篇
  1996年   670篇
  1995年   678篇
  1994年   685篇
  1993年   632篇
  1992年   590篇
  1991年   513篇
  1990年   479篇
  1989年   468篇
  1988年   420篇
  1987年   431篇
  1986年   310篇
  1985年   662篇
  1984年   946篇
  1983年   645篇
  1982年   734篇
  1981年   577篇
  1980年   508篇
  1979年   453篇
  1978年   285篇
  1977年   280篇
  1976年   230篇
  1974年   186篇
  1973年   183篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
β-galactosidase is a commercially important enzyme that was purified from probiotic Pediococcus acidilactici. The enzyme was extracted from cells using sonication and subsequently purified using ammonium sulphate fractionation and successive chromatographies on Sephadex G-100 and Q-Sepharose. The enzyme was purified 3.06-fold up to electrophoretic homogeneity with specific activity of 0.883 U/mg and yield of 28.26%. Molecular mass of β-galactosidase as estimated by SDS-PAGE and MALDI-TOF was 39.07 kDa. The enzyme is a heterodimer with subunit mass of 15.55 and 19.58 kDa. The purified enzyme was optimally active at pH 6.0 and stable in a pH range of 5.8–7.0 with more than 97% activity. Purified β-galactosidase was optimally active at 50 °C. Kinetic parameters Km and Vmax for purified enzyme were 400 µM and 1.22 × 10−1 U respectively. Its inactivation by PMSF confirmed the presence of serine at the active site. The metal ions had different effects on enzyme. Ca2+, Mg2+ and Mn2+ slightly activated the enzyme whereas NH4+, Co2+ and Fe3+ slightly decreased the enzyme activity. Thermodynamic parameters were calculated that suggested that β-galactosidase is less stable at higher temperature (60 °C). Purified enzyme effectively hydrolysed milk lactose with lactose hydrolysing rate of 0.047 min−1 and t1/2 of 14.74 min. This is better than other studied β-galactosidases. Both sonicated Pediococcus acidilactici cells and purified β-galactosidase synthesized galactooligosaccharides (GOSs) as studied by TLC at 30% and 50% of lactose concentration at 47.5 °C. These findings indicate the use of β-galactosidase from probiotic bacteria for producing delactosed milk for lactose intolerant population and prebiotic synthesis. pH and temperature optima and its activation by Ca2+ shows that it is suitable for milk processing.  相似文献   
42.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
43.
A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought (“drought escape”). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.  相似文献   
44.
45.
The CMP-N-acetylneuraminic acid (CMP-NeuNAc) synthetase gene of Neisseria meningitidis group B is located on a 2.3-kb EcoRI fragment within the cps gene cluster. Nucleotide sequence determination of the gene encoding the CMP-NeuNAc synthetase revealed a 515-bp open reading frame that can encode a 18.9-kDA protein. A computer data base scan revealed a 59.4% identity to the CMP-NeuNAc synthetase gene of E. coli K1. Enzymatic activity was confirmed in vitro and in vivo. Transformation of the CMP-NeuNAc defective E. coli K1 strain EV5 with the meningococcal CMP-NeuNAc synthetase could complement the defect in E. coli.  相似文献   
46.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
47.
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50–4000 ng/mg and 30–6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.  相似文献   
48.
49.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号